
An introduction to Python
Source:

http://www.python.org

PDF:

http://www.monard.info

1/119

http://www.python.org
http://www.monard.info

Introduction: why Python

2/119

Python in a few words
Python is a scripting language which can replace most task scripts and compiled programs
written in languages like C/C++/Java (no compilation is necessary).

Python is available in many platforms: Windows, Mac, Linux, etc.

It is a very high level language that provides

• high level data types built-in (lists, dictionnaries, tuples, sets, ...),

• object-oriented programming (but this is not mandatory),

• numerous modules (I/O, system calls, threads, GUIs, ...),

• and dynamical prototyping (no need to declare variable type).

Python is extensible: one can write C, Fortran or Java libraries which can be called directly in
a Python script.

The language is named after the BBC show “Monty Python’s Flying Circus” and has nothing
to do with reptiles.

3/119

History
Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch
Centrum (CWI) in the Netherlands as a successor of a language called ABC.

Van Rossum is Python's principal author, and his continuing central role in deciding the
direction of Python is reflected in the title given to him by the Python community, Benevolent
Dictator for Life (BDFL).

In 2001, the Python Software Foundation (PSF) was formed, a non-profit organization
created specifically to own Python-related Intellectual Property.

From 2005 to 2012, Van Rossum worked for Google.

In January 2013, Van Rossum started working with Dropbox

4/119

http://www.python.org/
http://www.cwi.nl/
http://www.python.org/psf/

All Python releases are Open Source.

• Python 1.0 - January 1994

• Python 1.5 - December 31, 1997

• Python 1.6 - September 5, 2000

• Python 2.0 - October 16, 2000

• Python 2.1 - April 17, 2001

• Python 2.2 - December 21, 2001

• Python 2.3 - July 29, 2003

• Python 2.4 - November 30, 2004

• Python 2.5 - September 19, 2006

• Python 2.6 - October 1, 2008

• Python 2.7 - July 3, 2010

5/119

http://www.opensource.org/

• Python 3.0 - December 3, 2008

• Python 3.1 - June 27, 2009

• Python 3.2 - February 20, 2011

• Python 3.3 - September 29, 2012

• Python 3.4 - March 16, 2014

6/119

Python 2.x vs. Python 3.x
Python 3.0 (also called Python 3000 or py3k), a major, backwards-incompatible release, was
released on 3 December 2008

Python 2.x and Python 3.x branches have been planned to coexist in parallel release.

Python 2.6 was released to coincide with Python 3.0, and included some features from that
release.

Similarly, Python 2.7 coincided with and included features from Python 3.1.

Parallel releases ceased as of Python 3.2.

Stables releases: 3.4.1 (18 May 2014), 2.7.8 (31 May 2014)

The tutorial presented here will only concern the 2.x branch.

7/119

First steps in python

8/119

The Python interpreter
To start using Python, just ask python !

Python 2.7.3 (default, Aug 1 2012, 05:14:39)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

You can impose the python version you want to use:

 $ python2.7
Python 2.7.3 (default, Aug 1 2012, 05:14:39)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

To quit the python interpreter, type Ctrl-D.

9/119

Playing with the python interpreter:

>>> 2+3
5
>>> 3/5.3
0.56603773584905659
>>> (2+3)*5+4**3
89
>>> print 'hello'
hello
>>> print 'another hello'
another hello
>>> print 'you can use \' or " in a string definition'
you can use ' or " in a string definition
>>> print "don't you understand?"
don't you understand?

10/119

Python scripts
On Unix/Linux systems, Python scripts can be made directly executable, like shell scripts, by
putting the line

#!/usr/bin/env python

The script can be given an executable mode, or permission, using the chmod command:

chmod +x myscript.py

On Windows systems, there is no notion of an “executable mode”. The Python installer
automatically associates .py files with python.exe so that a double-click on a Python file will
run it as a script. The extension can also be .pyw, in that case, the console window that
normally appears is suppressed.

11/119

Source code encoding
It is possible to use encodings different than ASCII in Python source files. The best way to do
it is to put one more special comment line right after the #! line to define the source file
encoding:

#!/usr/bin/env python
-*- coding: iso8859-1 -*-

print "un pétit encodéûr"

$./script1.py
un pétit encodéûr

12/119

#!/usr/bin/env python

print "un pétit encodéûr"

$./script1.py
File "script.py", line 3
SyntaxError: Non-ASCII character '3' in file script.py on line 3, but no encoding declared; see http://www.python.org/peps/pep-0263.html for details

13/119

Python as a calculator
When used directly as an interpretor, python is first a calculator.

Prompts:

• >>>: enter a command

• (no prompt): the result of the command

• ...: wait for the end of the command (continuation of the previous line or block of
commands)

14/119

Comments:

• all comments in python start with a # and finish at the end of the current line

this is the first comment
SPAM = 1
and this is the second comment
... and now a third!
STRING = "# This is not a comment."

15/119

Numbers

>>> 2+2
4
>>> # This is a comment
... 4+4-2*3
2
>>> (50+6)/3
18
>>> # integer division returns the floor number
... # if you want a real, you must perform the division
... # using real number
... (50.+6)/3
18.666666666666668
>>>

16/119

The equal sign (=) is used to assign a value to a variable. Afterwards, no result is displayed
before the next interactive prompt:

>>> width = 20
>>> height = 5*9
>>> width * height
900

A value can be assigned to several variables simultaneously:

>>> x = y = z = 0 # Zero x, y and z
>>> x
0
>>> y
0
>>> z
0

17/119

Variables must be “defined” (assigned a value) before they can be used, or an error will
occur:

>>> n
Traceback (most recent call last):
 File "`<stdin>`", line 1, in `<module>`
NameError: name 'n' is not defined

There is full support for floating point; operators with mixed type operands convert the integer
operand to floating point:

>>> 3 * 3.75 / 1.5
7.5
>>> 7.0 / 2
3.5

18/119

Complex numbers are also supported; imaginary numbers are written with a suffix of j or J.
Complex numbers with a nonzero real component are written as (real+imagj), or can be
created with the complex(real, imag) function.

>>> 1j * 1J
(-1+0j)
>>> 1j * complex(0,1)
(-1+0j)
>>> 3+1j*3
(3+3j)
>>> (3+1j)*3
(9+3j)
>>> (1+2j)/(1+1j)
(1.5+0.5j)

19/119

Complex numbers are always represented as two floating point numbers, the real and
imaginary part. To extract these parts from a complex number z, use z.real and z.imag.

>>> a=1.5+0.5j
>>> a.real
1.5
>>> a.imag
0.5

20/119

In interactive mode, the last printed expression is assigned to the variable _. This means that
when you are using Python as a desk calculator, it is somewhat easier to continue
calculations, for example:

>>> tax = 12.5 / 100
>>> price = 100.50
>>> price * tax
12.5625
>> price + _
113.0625
>>> round(_, 2)
113.06

21/119

Strings

a = 'This is a string'
b = "This is another string"
c = """And another way of defining a string"""
d = "The difference between \', \", and \"\"\" is \n the way \
a newline is handled"
e = """ using three double quotes " is better when
multiple lines are involved"""

print a
print b
print c
print d
print e

22/119

Strings can be concatenated (glued together) with the + operator, and repeated with *:

text = "This is a "+"dead parrot !"
print text
print (text+" ")*3

23/119

Strings can be subscripted (indexed); like in C, the first character of a string has subscript
(index) 0. There is no separate character type; a character is simply a string of size one.
Substrings can be specified with the slice notation: two indices separated by a colon.

text = "This is a "+"dead parrot !"
print text # all characters
print text[0] # character at index 0
print text[10] # character at index 10
print text[10:14] # characters from index 10 to index 14 (excluded)
print text[15:] # characters from index 15 to the end
 # of the string
print text[:4] # first four characters
print text[10:-9] # from index 10 to the end of the string
 # minus 9 characters

24/119

The built-in function len() returns the length of a string:

>>> s = 'supercalifragilisticexpialidocious'
>>> len(s)
34

25/119

Lists
Python knows a number of compound data types, used to group together other values. The
most versatile is the list, which can be written as a list of comma-separated values (items)
between square brackets. List items need not all have the same type.

>>> a = ['spam', 'eggs', 100, 1234]
>>> a
['spam', 'eggs', 100, 1234]

26/119

Like string indices, list indices start at 0, and lists can be sliced, concatenated and so on:

>>> a[0]
'spam'
>>> a[3]
1234
>>> a[-2]
100
>>> a[1:-1]
['eggs', 100]
>>> a[:2] + ['bacon', 2*2]
['spam', 'eggs', 'bacon', 4]
>>> 3*a[:3] + ['Boo!']
['spam', 'eggs', 100, 'spam', 'eggs', 100, 'spam', 'eggs', 100, 'Boo!']

27/119

Unlike strings, which are immutable, it is possible to change individual elements of a list:

>>> a
['spam', 'eggs', 100, 1234]
>>> a[2] = a[2] + 23
>>> a
['spam', 'eggs', 123, 1234]

28/119

Assignment to slices is also possible, and this can even change the size of the list or clear it
entirely:

>>> # Replace some items:
... a[0:2] = [1, 12]
>>> a
[1, 12, 123, 1234]
>>> # Remove some:
... a[0:2] = []
>>> a
[123, 1234]
>>> # Insert some:
... a[1:1] = ['bletch', 'xyzzy']
>>> a
[123, 'bletch', 'xyzzy', 1234]

29/119

>>> # Insert (a copy of) itself at the beginning
>>> a[:0] = a
>>> a
[123, 'bletch', 'xyzzy', 1234, 123, 'bletch', 'xyzzy', 1234]
>>> # Clear the list: replace all items with an empty list
>>> a[:] = []
>>> a
[]

The built-in function len() also applies to lists:

>>> a = ['a', 'b', 'c', 'd']
>>> len(a)
4

30/119

It is possible to nest lists (create lists containing other lists), for example:

>>> q = [2, 3]
>>> p = [1, q, 4]
>>> len(p)
3
>>> p[1]
[2, 3]
>>> p[1][0]
2
>>> p[1].append('xtra') # See section 5.1
>>> p
[1, [2, 3, 'xtra'], 4]
>>> q
[2, 3, 'xtra']

Note that in the last example, p[1] and q really refer to the same object!

31/119

Programming in Python

32/119

A first example
Python can be used for more complicated tasks than adding two and two together. For
instance, we can write an initial sub-sequence of the Fibonacci series as follows:

>>> # Fibonacci series:
... # the sum of two elements defines the next
... a, b = 0, 1
>>> while b < 10:
... print b
... a, b = b, a+b
...
1
1
2
3
5
8

33/119

This example introduces several new features.

34/119

multiple variable assignment

The first line contains a multiple assignment: the variables a and b simultaneously get
the new values 0 and 1. On the last line this is used again, demonstrating that the
expressions on the right-hand side are all evaluated first before any of the assignments
take place. The right-hand side expressions are evaluated from the left to the right.

35/119

conditional loop

The while loop executes as long as the condition (here: b < 10) remains true. In Python,
like in C/Java, any non-zero integer value is true; zero is false. The condition may also
be a string or list value, in fact any sequence; anything with a non-zero length is true,
empty sequences are false. The test used in the example is a simple comparison.

36/119

The standard comparison operators are written the same as in C:

• < (less than),

• > (greater than),

• == (equal to),

• <= (less than or equal to),

• >= (greater than or equal to)

• != (not equal to).

37/119

blocks are made by indenting the code

The body of the loop is indented: indentation is Python’s way of grouping statements.
Each line within a basic block must be indented by the same amount.

38/119

print statement

The print statement writes the value of the expression(s) it is given. It differs from just
writing the expression you want to write (as we did earlier in the calculator examples) in
the way it handles multiple expressions and strings. Strings are printed without quotes,
and a space is inserted between items, so you can format things nicely, like this:

>>> i = 256*256
>>> print 'The value of i is', i
The value of i is 65536

39/119

A trailing comma avoids the newline after the output:

>>> a, b = 0, 1
>>> while b < 1000:
... print b,
... a, b = b, a+b
...
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

40/119

if statements

x = int(raw_input("Please enter an integer: "))
if x < 0:
x = 0
 print 'Negative changed to zero'
elif x == 0:
 print 'Zero'
elif x == 1:
 print 'Single'
else:
 print 'More'

There can be zero or more elif parts, and the else part is optional. The keyword elif is
short for else if, and is useful to avoid excessive indentation. An
if ... elif ... elif ... else ... sequence is a substitute for the switch or case
statements found in other languages.

41/119

for statement
Python’s for statement iterates over the items of any sequence (a list or a string), in the
order that they appear in the sequence.

>>> # Measure some strings:
... a = ['cat', 'window', 'defenestrate']
>>> for x in a:
... print x, len(x)
...
cat 3
window 6
defenestrate 12

42/119

the range() function
If you do need to iterate over a sequence of numbers, the built-in function range() comes
in handy. It generates lists containing arithmetic progressions:

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

43/119

The given end point is never part of the generated list; range(10) generates a list of 10
values, the legal indices for items of a sequence of length 10. It is possible to let the range
start at another number, or to specify a different increment (even negative; sometimes this is
called the step):

>>> range(5, 10)
[5, 6, 7, 8, 9]
>>> range(0, 10, 3)
[0, 3, 6, 9]
>>> range(-10, -100, -30)
[-10, -40, -70]

44/119

To iterate over the indices of a sequence, you can combine range() and len() as
follows:

>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i in range(len(a)):
... print i, a[i]
...
0 Mary
1 had
2 a
3 little
4 lamb

45/119

break, continue, and else (again)
The break statement breaks out of the smallest enclosing for or while loop. The
continue statement continues with the next iteration of the loop.

Loop statements may have an else clause; it is executed when the loop terminates through
exhaustion of the list (with for) or when the condition becomes false (with while), but not
when the loop is terminated by a break statement. This is exemplified by the following loop,
which searches for prime numbers:

>>> for n in range(2, 10):
... for x in range(2, n):
... if n % x == 0:
... print n, 'equals', x, '*', n/x
... break
... else:
... # loop fell through without finding a factor
... print n, 'is a prime number'

46/119

...
2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number
8 equals 2 * 4
9 equals 3 * 3

47/119

pass
The pass statement does nothing. It can be used when a statement is required syntactically
but the program requires no action. For example:

>>> while True:
... pass # Busy-wait for keyboard interrupt (Ctrl+C)
...

This is commonly used for creating minimal classes:

>>> class MyEmptyClass:
... pass
...

48/119

Another place pass can be used is as a place-holder for a function or conditional body when
you are working on new code, allowing you to keep thinking at a more abstract level. The
pass is silently ignored:

>>> def initlog(*args):
... pass # Remember to implement this!
...

49/119

defining functions

50/119

a first example

>>> def fib(n): # write Fibonacci series up to n
... """Print a Fibonacci series up to n."""
... a, b = 0, 1
... while b < n:
... print b,
... a, b = b, a+b
...
>>> # Now call the function we just defined:
... fib(2000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

The keyword def introduces a function definition. It must be followed by the function name
and the parenthesized list of formal parameters. The statements that form the body of the
function start at the next line, and must be indented.

The first statement of the function body can optionally be a string literal; this string literal is
the function’s documentation string, or docstring.

51/119

Instead of printing the results, one can write a function that returns a list of the numbers of
the Fibonacci series.

>>> def fib2(n): # return Fibonacci series up to n
... """Return a list containing the Fibonacci series up to n."""
... result = []
... a, b = 0, 1
... while b < n:
... result.append(b) # see below
... a, b = b, a+b
... return result
...
>>> f100 = fib2(100) # call it
>>> f100 # write the result
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

The return statement returns with a value from a function. return without an expression
argument returns None. Falling off the end of a function also returns None.

52/119

A function can return more than one argument using a tuple:

def euclidean(n,m):
 """return the integer division and the modulo of n/m"""
 return n/m, n%m

a, b = euclidean(18,7)
print "Euclidean division"
print "%d = %d * %d + %d" % (18, a, 7, b)

53/119

default argument values
Python allows the use of default argument values. This creates a function that can be called
with fewer arguments than it is defined to allow.

def f(x = 2, y = 3):
 return x+y
print f(1, 2), f(1), f(x=2), f(y=3), f(y=5,x=-2)

54/119

Documentation strings
Python allows the code documentation (use it !)

>>> def my_function():
... """Do nothing, but document it.
...
... No, really, it doesn't do anything.
... """
... pass
...
>>> print my_function.__doc__
Do nothing, but document it.

 No, really, it doesn't do anything.

55/119

More on lists
The list data type has some more methods. Here are all of the methods of list objects:

list.append(x):

Add an item to the end of the list; equivalent to a[len(a):] = [x].

list.extend(L):

Extend the list by appending all the items in the given list; equivalent to
a[len(a):] = L.

list.insert(i, x):

Insert an item at a given position. The first argument is the index of the element before
which to insert, so a.insert(0, x) inserts at the front of the list, and
a.insert(len(a), x) is equivalent to a.append(x).

list.remove(x):

Remove the first item from the list whose value is x. It is an error if there is no such item.

56/119

list.pop([i]):

Remove the item at the given position in the list, and return it. If no index is specified,
a.pop() removes and returns the last item in the list. (The square brackets around the i
in the method signature denote that the parameter is optional, not that you should type
square brackets at that position. You will see this notation frequently in the Python
Library Reference.)

list.index(x):

Return the index in the list of the first item whose value is x. It is an error if there is no
such item.

list.count(x):

Return the number of times x appears in the list.

list.sort():

Sort the items of the list, in place.

list.reverse():

Reverse the elements of the list, in place.

57/119

Functional programming tools
There are three built-in functions that are very useful when used with lists: filter(),
map(), and reduce().

filter(function, sequence)

returns a sequence consisting of those items from the sequence for which
function(item) is true. For example, to compute some primes:

>>> def f(x): return x % 2 != 0 and x % 3 != 0
...
>>> filter(f, range(2, 25))
[5, 7, 11, 13, 17, 19, 23]

58/119

map(function, sequence)

calls function(item) for each of the sequence’s items and returns a list of the return
values. For example, to compute some cubes:

>>> def cube(x): return x*x*x
...
>>> map(cube, range(1, 11))
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

59/119

reduce(function, sequence)

returns a single value constructed by calling the binary function function on the first
two items of sequence, then on the result and the next item, and so on. For example, to
compute the sum of the numbers 1 through 10:

>>> def add(x,y): return x+y
...
>>> reduce(add, range(1, 11))
55

60/119

List Comprehension
List comprehensions provide a concise way to create lists without resorting to use of map(),
or filter(). The resulting list definition tends often to be clearer than lists built using those
constructs.

>>> vec = [2, 4, 6]
>>> [3*x for x in vec]
[6, 12, 18]
>>> [3*x for x in vec if x > 3]
[12, 18]
>>> [3*x for x in vec if x < 2]
[]

61/119

>>> vec1 = [2, 4, 6]
>>> vec2 = [4, 3, -9]
>>> [x*y for x in vec1 for y in vec2]
[8, 6, -18, 16, 12, -36, 24, 18, -54]
>>> [x+y for x in vec1 for y in vec2]
[6, 5, -7, 8, 7, -5, 10, 9, -3]
>>> [vec1[i]*vec2[i] for i in range(len(vec1))]
[8, 12, -54]

62/119

Tuples
A tuple consists of a number of values separated by commas, for instance:

>>> t = 12345, 54321, 'hello!'
>>> t[0]
12345
>>> t
(12345, 54321, 'hello!')
>>> # Tuples may be nested:
... u = t, (1, 2, 3, 4, 5)
>>> u
((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))

It is not possible to assign to the individual items of a tuple. However, it is possible to create
tuples which contain mutable objects, such as lists.

63/119

Though tuples may seem similar to lists, they are often used in different situations and for
different purposes. Tuples are immutable, and usually contain an heterogeneous sequence
of elements that are accessed via unpacking or indexing (or even by attribute in the case of
namedtuples). Lists are mutable, and their elements are usually homogeneous and are
accessed by iterating over the list.

The statement:

t = 12345, 54321, ’hello!’

is an example of tuple packing: the values 12345, 54321 and ’hello!’ are packed together in a
tuple. The reverse operation is also possible:

>>> x, y, z = t

64/119

Dictionnaries
It is best to think of a dictionary as an unordered set of key: value pairs, with the
requirement that the keys are unique (within one dictionary). A pair of braces creates an
empty dictionary: {}. Placing a comma-separated list of key:value pairs within the braces
adds initial key:value pairs to the dictionary.

>>> tel = {'jack': 4098, 'sape': 4139}
>>> tel['guido'] = 4127
>>> tel
{'sape': 4139, 'guido': 4127, 'jack': 4098}
>>> tel['jack']
4098
>>> del tel['sape']
>>> tel['irv'] = 4127
>>> tel
{'guido': 4127, 'irv': 4127, 'jack': 4098}
>>> tel.keys()

65/119

['guido', 'irv', 'jack']
>>> 'guido' in tel
True

Looping techniques:

>>> knights = {'gallahad': 'the pure', 'robin': 'the brave'}
>>> for (key, value) in knights.iteritems():
... print key, value
...
gallahad the pure
robin the brave

66/119

Modules
A module is a file containing Python definitions and statements. The file name is the module
name with the suffix .py appended.

Fibonacci numbers module
def fib(n): # write Fibonacci series up to n
 a, b = 0, 1
 while b < n:
 print b,
 a, b = b, a+b
def fib2(n): # return Fibonacci series up to n
 result = []
 a, b = 0, 1
 while b < n:
 result.append(b)
 a, b = b, a+b
 return result

67/119

Using the module (saved as fibo.py): .. code-block:: python

>>> import fibo
>>> fibo.fib(1000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2(100)
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

Python comes with a library of standard modules, described in a separate document, the
Python Library Reference.

68/119

Input/Output

69/119

old string formatting
The % operator can also be used for string formatting.

>>> import math
>>> print 'The value of PI is approximately %5.3f.' % math.pi
The value of PI is approximately 3.142.

70/119

reading and writing files
open() returns a file object, and is most commonly used with two arguments:
open(filename, mode).

To read a file’s contents, call f.read(size), which reads some quantity of data and returns
it as a string. size is an optional numeric argument. When size is omitted or negative, the
entire contents of the file will be read and returned.

>>> f = open('/tmp/workfile', 'w')
>>> print f
`<open file '/tmp/workfile', mode 'w' at 80a0960>`
>>> f.read()
'This is the entire file.\n'
>>> f.read()
''
>>> f.close()

71/119

f.readline() reads a single line from the file.

>>> f.readline()
'This is the first line of the file.\n'
>>> f.readline()
'Second line of the file\n'
>>> f.readline()
''

An alternative approach to reading lines is to loop over the file object. This is memory
efficient, fast, and leads to simpler code:

>>> for line in f:
 print line,

This is the first line of the file.
Second line of the file

72/119

f.write(string) writes the contents of string to the file, returning None.

>>> f.write('This is a test\n')

To write something other than a string, it needs to be converted to a string first:

>>> value = ('the answer', 42)
>>> s = str(value)
>>> f.write(s)

73/119

Standard input is available with sys.stdin file object. A simple equivalent to the cat
UNIX command is:

import sys

for line in sys.stdin:
 print line, # don't forget the comma!

74/119

Exceptions
Even if a statement or expression is syntactically correct, it may cause an error when an
attempt is made to execute it. Errors detected during execution are called exceptions.

>>> 10 * (1/0)
Traceback (most recent call last):
 File "`<stdin>`", line 1, in ?
ZeroDivisionError: integer division or modulo by zero
>>> 4 + spam*3
Traceback (most recent call last):
 File "`<stdin>`", line 1, in ?
NameError: name 'spam' is not defined
>>> '2' + 2
Traceback (most recent call last):
 File "`<stdin>`", line 1, in ?
TypeError: cannot concatenate 'str' and 'int' objects

75/119

The last line of the error message indicates what happened.

Exceptions come in different types, and the type is printed as part of the message: the types
in the example are ZeroDivisionError, NameError and TypeError.

The string printed as the exception type is the name of the built-in exception that occurred.
This is true for all built-in exceptions, but need not be true for user-defined exceptions.

76/119

Handling exceptions

>>> while True:
... try:
... x = int(raw_input("Please enter a number: "))
... break
... except ValueError:
... print "Oops! That was no valid number. Try again..."
...

77/119

The try statement works as follows.

• First, the try clause (the statement(s) between the try and except keywords) is
executed.

• If no exception occurs, the except clause is skipped and execution of the try
statement is finished.

• If an exception occurs during execution of the try clause, the rest of the clause is
skipped. Then if its type matches the exception named after the except keyword, the
except clause is executed, and then execution continues after the try statement.

• If an exception occurs which does not match the exception named in the except
clause, it is passed on to outer try statements; if no handler is found, it is an
unhandled exception and execution stops with a message as shown above.

78/119

A try statement may have more than one except clause, to specify handlers for different
exceptions.

At most one handler will be executed.

Handlers only handle exceptions that occur in the corresponding try clause, not in other
handlers of the same try statement.

An except clause may name multiple exceptions as a parenthesized tuple, for example:

... except (RuntimeError, TypeError, NameError):

... pass

79/119

Raising Exceptions
The raise statement allows the programmer to force a specified exception to occur. For
example:

>>> raise NameError("This is my error message")
Traceback (most recent call last):
 File "`<stdin>`", line 1, in `<module>`
NameError: This is my error message

Programs may name their own exceptions by creating a new exception class. Exceptions
should typically be derived from the Exception class, either directly or indirectly.

80/119

Classes

81/119

Class Definition
The simplest form of class definition looks like this:

class MyFirstClass(object):
 # list of statements
 pass

The object statement is not mandatory but highly recommended since it allows the use of
"modern" python classes.

82/119

Class Instantiation
The creation (instantiation) of python objects is performed by calling the class:

x = MyFirstClass()

83/119

Object Attributes
Attribute references use the standard syntax used for all attribute references in Python:
obj.name.

Valid attribute names are all the names that were in the class’s namespace when the class
object was created.

Data attributes need not be declared; like local variables, they spring into existence when
they are first assigned to.

class MyFirstClass(object):
 pass

x = MyFirstClass()
x.a = 1
x.b = 'toto'
print x.a
print x.b

84/119

class ClassWithAttributes(object):
 i = 12345

x = ClassWithAttributes()
print x.i

85/119

Object Methods
A method is a function that “belongs to” an object.

Usually, a method is called right after it is bound:

x.f()

86/119

When an object method is called by python, a reference to the object is given as the first
parameter of the function. Therefore, a method defined in a class body has always a
mandatory first parameter, conventionally named self.

class MyClass(object):
 def addition(self, a, b): # <-- three parameters !
 """return the addition of two parameters"""
 return a+b

a = MyClass()
print a.addition(2,3) # <-- Two parameters !
 #(the parameter 'self' is automatically include by python)

87/119

Constructors
Class constructor is a special function as defined in the class: __init__().

When a class defines an __init__() method, class instantiation automatically invokes
__init__() for the newly-created class instance.

class MyClass(object):
 def __init__(self):
 print "MyClass instance is generated"

x = MyClass()

88/119

Of course, the __init__() method may have arguments for greater flexibility.

In that case, arguments given to the class instantiation operator are passed on to
__init__().

class MyClass(object):
 def __init__(self, value):
 print "MyClass instance is generated with value:"+repr(value)

x = MyClass('toto')

89/119

Object Attributes (bis)
Using the self reference, it is possible to distinguish in a method definition between local
variables and object attributes:

>>> class MyClass(object):
... a = 1 # object attribute
... def f1(self):
... a = 2 # local variable
... def f2(self):
... self.a = -3 # self attribute
...
>>> x = MyClass()
>>> x.a
1
>>> x.f1()
>>> x.a
1

90/119

>>> x.f2()
>>> x.a
-3

91/119

Static Methods
A static method is a method that you can call on a class, or on any instance of the class,
without the special behavior and constraints of ordinary methods (which are bound on the
first argument).

In python, a static method can be built using the staticmethod built-in type:

class Complex(object):
 def __init__(self, r, i):
 self.real = r
 self.img = i

 def conjugate(self):
 """return the conjugate of the complex number"""
 return Complex(self.real, -self.img)

92/119

 def addition(a, b): # <-- no 'self' parameter
 """return the addition of two complex numbers"""
 return Complex(a.real+b.real, a.img+b.img)
 addition = staticmethod(addition)

 def __repr__(self):
 """return a representation of the complex number"""
 return "(%f, %f)" % (self.real, self.img)

z1 = Complex(1.4, 2.3)
z2 = z1.conjugate()
zsomme = Complex.addition(z1, z2)
print repr(z1)
print repr(z2)
print repr(zsomme)

93/119

Properties
A property is an instance attribute with special functionality. You reference the attribute with
the normal syntax (obj.x). However, rather than following the usual semantics for attribute
reference, specific access call methods are used:

class C(object):
 def __init__(self):
 self._x = None

 def getx(self):
 return self._x
 def setx(self, value):
 self._x = value
 def delx(self):
 del self._x
 x = property(getx, setx, delx, "I'm the 'x' property.")

94/119

An example:

class PositiveInteger(object):
 def __init__(self):
 self.__n = 0 # the two underscores mean 'private' attribute
 # while one underscore means 'protected' attribute
 # (self._x is accessible within the class
 # and the subclasses,
 # self.__n is accessible only within the class)

 def setN(self, n):
 if (n < 0):
 raise TypeError, "%d is not a positive integer" % n
 self.__n = n

 def getN(self):
 return self.__n
 n = property(getN, setN)

95/119

a = PositiveInteger()
a.n = 2
print a.n
a.n = -2

96/119

Set, delete and doc attributes are not mandatory. This enables the use of properties when an
attribute is only allowed to be read and not set.

class Rectangle(object):
 def __init__(self, width, height):
 self.width = width
 self.height = height

 def getArea(self):
 return self.width*self.height
 area = property(getArea)

r = Rectangle(10, 22)
print r.area

97/119

Inheritance
The syntax for a derived class definition looks like this:

class DerivedClassName(BaseClassName):
 `<statement-1>`
 .
 .
 .
 `<statement-N>`

98/119

Python has two built-in functions that work with inheritance:

* Use isinstance() to check an object’s type: ``isinstance(obj, int)`` will be True only if `<html>`obj.__class__`</html>` is ``int`` or some class derived from ``int``.
* Use issubclass() to check class inheritance: ``issubclass(subclass, class)`` will be True if ``subclass`` is a subclass of ``class``

>>> a = 3
>>> isinstance(a, int) # a is an instance of the 'int' class
True
>>> isinstance(a, float) # but not of the 'float' class
False
>>> issubclass(bool, int) # the 'bool' class is derived from 'int'
True
>>> issubclass(bool, float) # but not from 'float'
False

99/119

class Rectangle(object):
 def __init__(self, width, height):
 print "Rectangle __init__"
 self.width = width
 self.height = height
 def getArea(self):
 print "Rectangle getArea"
 return self.width*self.height
 area = property(getArea)
class Trapeze(Rectangle):
 def __init__(self, base, height):
 self.width = base
 self.height = height
class Square(Rectangle):
 def __init__(self, size):
 print "Square __init__"
 Rectangle.__init__(self, size, size) # call the super constructor

100/119

print "issubclass(Square, Rectangle) ", issubclass(Square, Rectangle)
print "issubclass(Rectangle, Square) ", issubclass(Rectangle, Square)
print "issubclass(Rectangle, object) ", issubclass(Rectangle, object)
print "issubclass(Square, object) ", issubclass(Square, object)
print "issubclass(Square, Trapeze) ", issubclass(Square, Trapeze)

t = Trapeze(10, 20)
print "isinstance(t, Trapeze) ", isinstance(t, Trapeze)
print "isinstance(t, Rectangle) ", isinstance(t, Rectangle)
print "isinstance(t, Square) ", isinstance(t, Square)
print t.area

a = Square(20)
print "isinstance(a, Trapeze) ", isinstance(a, Trapeze)
print "isinstance(a, Rectangle) ", isinstance(a, Rectangle)
print "isinstance(a, Square) ", isinstance(a, Square)
print a.area

101/119

General-Purpose Special Methods
Some special methods relate to general-purpose operations. A class that defines or inherits
these methods allows its instances to control such operations.

class Complexe(object):
 def __init__(self, r, i):
 self.real = r
 self.img = i

 def __add__(self, other):
 return Complexe(self.real + other.real, self.img + other.img)

 def __sub__(self, other):
 return Complexe(self.real - other.real, self.img - other.img)

102/119

 def __mul__(self, other):
 return Complexe(self.real*other.real-self.img*other.img,
 self.real*other.img + self.img*other.real)

 def __div__(self, other):
 denominator = other.real**2 + other.img**2
 return Complexe((self.real*other.real +
 self.img*other.img)/denominator,
 (self.img*other.real -
 self.real*other.img)/denominator)

 def __repr__(self):
 return "%f + %fi" % (self.real, self.img)

z1 = Complexe(1, 2.4)
z2 = Complexe(-3.2, 5.1)
print z1+z2, z1-z2, z1*z2, z1/z2

103/119

Brief Tour of the Standard Library
See the Python documentation.

104/119

http://docs.python.org/tutorial/stdlib.html

Operating System Interface
The os module provides dozens of functions for interacting with the operating system

>>> import os
>>> os.getcwd()
'/home/gmonard/Ecrit/Conferences/2013/Ecole-CORREL-Paris/python-wiki/examples'
>>> os.chdir('/tmp/')
>>> os.mkdir('test')
>>> os.chdir('test')
>>> os.getcwd()
'/tmp/test'
>>>

105/119

The built-in dir() and help() functions are useful as interactive aids for working with
large modules like os.

>>> import os
>>> dir(os)
<returns a list of all module functions>
>>> help(os)
<returns an extensive manual page created from the module's docstrings>

106/119

For daily file and directory management tasks, the shutil module provides a higher level
interface that is easier to use:

>>> import shutil
>>> shutil.copyfile('my_source_file', 'my_target_file')
>>> shutil.move('/tmp/filename', 'newfilename')

107/119

Useful functions on pathnames are implemented in the os.path module.

>>> os.path.basename('/tmp/toto1.txt')
'toto1.txt'
>>> os.path.dirname('/tmp/toto1.txt')
'/tmp'
>>> os.path.isfile('/tmp/toto1.txt')
False
>>> os.path.isfile('script.py')
True

108/119

File Wildcards
The glob module provides a function for making file lists from directory wildcard searches

>>> import glob
>>> glob.glob('*.py')
['primes.py', 'random.py', 'quote.py']

109/119

Command Line Arguments
Common utility scripts often need to process command line arguments. These arguments are
stored in the sys module’s argv attribute as a list.

>>> import sys
>>> print sys.argv

The getopt module processes sys.argv using the conventions of the Unix getopt()
function. More powerful and flexible command line processing is provided by the argparse
module.

110/119

Error Output Redirection and Program Termination
The sys module also has attributes for stdin, stdout, and stderr. The latter is useful for
emitting warnings and error messages to make them visible even when stdout has been
redirected:

>>> sys.stderr.write(’Warning, log file not found\n’)
Warning, log file not found

The most direct way to terminate a script is to use sys.exit().

111/119

Mathematics
The math module gives access to the underlying C library functions for floating point math:

>>> import math
>>> math.cos(math.pi/4)
0.7071067811865476
>>> math.log(1024, 2)
10.0
>>>

112/119

The random module provides tools for making random selections

>>> import random
>>> random.choice(['apple', 'orange', 'banana'])
'apple'
>>> random.choice(['apple', 'orange', 'banana'])
'orange'
>>> random.choice(['apple', 'orange', 'banana'])
'banana'
>>> random.choice(['apple', 'orange', 'banana'])
'banana'
>>> random.choice(['apple', 'orange', 'banana'])
'apple'

113/119

>>> random.sample(range(100), 10) # sampling without replacement
[6, 16, 39, 0, 4, 11, 55, 54, 13, 12]
>>> random.random() # random float
0.28630038627790344
>>> random.random()
0.130898082399855

114/119

>>> random.randrange(6) # random integer chosen from range(6)
5
>>> random.randrange(6)
4
>>> random.randrange(6)
5
>>> random.randrange(6)
4
>>> random.randrange(6)
1
>>> random.randrange(6)
3
>>>

115/119

Internet Access
There are a number of modules for accessing the internet and processing internet protocols.
Two of the simplest are urllib2 for retrieving data from URLs and smtplib for sending
mail.

116/119

Data Compression
Common data archiving and compression formats are directly supported by modules
including: zlib, gzip, bz2, zipfile and tarfile.

117/119

Quality Control
One approach for developing high quality software is to write tests for each function as it is
developed and to run those tests frequently during the development process.

The doctest module provides a tool for scanning a module and validating tests embedded
in a program’s docstrings. Test construction is as simple as cutting-and-pasting a typical call
along with its results into the docstring. This improves the documentation by providing the
user with an example and it allows the doctest module to make sure the code remains true
to the documentation:

118/119

def average(values):
 """Computes the arithmetic mean of a list of numbers.

 >>> print average([20, 30, 70])
 40.0
 """
 return sum(values, 0.0) / len(values)

import doctest
doctest.testmod() # automatically validate the embedded tests

The unittest module is not as effortless as the doctest module, but it allows a more
comprehensive set of tests to be maintained in a separate file.

119/119

	Introduction: why Python
	Python in a few words
	History
	Python 2.x vs. Python 3.x

	First steps in python
	The Python interpreter
	Python scripts
	Source code encoding

	Python as a calculator
	Numbers
	Strings
	Lists

	Programming in Python
	A first example
	multiple variable assignment
	conditional loop
	blocks are made by indenting the code
	print statement

	if statements
	for statement
	the range() function
	break, continue, and else (again)
	pass
	defining functions
	a first example
	default argument values

	Documentation strings
	More on lists
	Functional programming tools
	List Comprehension
	Tuples
	Dictionnaries

	Modules
	Input/Output
	old string formatting
	reading and writing files

	Exceptions
	Handling exceptions
	Raising Exceptions

	Classes
	Class Definition
	Class Instantiation
	Object Attributes
	Object Methods
	Constructors
	Object Attributes (bis)
	Static Methods
	Properties
	Inheritance
	General-Purpose Special Methods

	Brief Tour of the Standard Library
	Operating System Interface
	File Wildcards
	Command Line Arguments
	Error Output Redirection and Program Termination
	Mathematics
	Internet Access
	Data Compression
	Quality Control

