
Introduction to Software Engineering

Gérald Monard

Ecole GDR CORREL - April 16, 2013

www.monard.info



Bibliography

â Software Engineering, 9th ed.
(I. Sommerville, 2010, Pearson)

â Conduite de projets informatiques, 2nde éd.
(B.-A. Guérin, 2012, ENI)

â Computer Science, An Overview, 10th ed.
(J. G. Brookshear, 2010, Pearson)

â Design Patterns Explained
(A. Shalloway, J. R. Trott, 2002, Addison-Wesley)

â Design Patterns, Elements of Reusable Object-Oriented Software
(E. Gamma, R. Helm, R. Johnson, J. Vlissides, 1995,
Addison-Wesley)

â Sam’s Teach Yourself UML in 24 hours
(J. Schmuller, 2006, Sams publishing)



INTRODUCTION

Why this course?

Software: Set of computer programs and associated documentation

Personal software vs. Professional Software: When one writes a program
for itself, he/she will be the only user, and he/she does
not need to care about writing program guides,
documenting the program design,. . . Professional software
is developed by teams rather than individuals, and is
intended to be used by other people than the developers.

Software Engineering is intended to support professional software
development rather that individual programming. It
includes techniques that support program specification,
design, and evolution.

This course targets an introduction to the main aspects of software
engineering. It will show you that a “good” software is not only a few
lines of codes...



INTRODUCTION

What is a “good” software?
Good software should deliver the required functionality and performance
to the user and should be:

â maintainable: it should be written in such a way so that it can
evolve to meet the changing needs of users

â dependable: it should be reliable, secure, and safe

â usable: it should be acceptable to the type of users for which it is
designed

â efficient: it should not make wasteful use of system resources such
as memory and processor cycles



INTRODUCTION

What is software engineering?
Software engineering is an engineering discipline that is concerned with
all aspects of software production, from the early stages of system
specification through to maintaining the system after it has gone into use.

What are the fundamental software engineering activities?

â Software specification

â Software development

â Software validation

â Software evolution

What is the difference between software engineering and computer science?
Computer science focuses on theory and fundamentals. Software
engineering is concerned with the practicalities of developing and
delivering useful software



OUTLINE

1. Software Processes
what are the activities involved in producing a software?

2. Requirement Engineering
How to define what a software should (and should not) do?

3. System Modeling
How to develop abstract models of a system, with each model
presenting a different view or perspective of that system?

4. Architectural Design and Implementation
How a software should be organized?

5. Software testing
What kind of tests should be carried out to validate a software?

6. Software evolution
How to help your software evolving?



SOFTWARE PROCESSES

What is a software process?

â A software process is a set of related activities that leads to the
production of a software product.

â These activities may involve:

3 the development of software from scratch
3 the extensions and modifications of existing systems
3 the configuration and integration of off-the-shelf software or system

components



SOFTWARE PROCESSES

There are many different software processes, but all include:

Software specification
The functionality of the software and constraints on its operation must
be defined

Software design and implementation
The software to meet the specification must be produced

Software validation
The software must be validated to ensure that it does what the customer
wants

Software evolution
The software must evolve to meet changing customer needs



SOFTWARE PROCESS MODELS

Software processes are complex and there is no ideal process. Most
organizations have developed their own software development processes.
Most software processes can be categorized as either:

â plan-driven processes, where all of the process activities are planned
in advance and progress is measured against this plan.

â agile processes, where planning is incremental and it is easier to
change the process to reflect changing customer requirements.

Generally, organizations try to find a balance between plan-driven and
agile processes



SOFTWARE PROCESS MODELS

Some generic process models:

â waterfall model This takes the fundamental process activities of
specification, development, validation, and evolution and represents
them as separate process phases

â incremental development This approach interleaves the activities of
specification, development, and validation. The system is developed
as a series of versions (increments), with each version adding
functionality to the previous version

â reuse-oriented software engineering This approach is based on the
existence of a significant number of reusable components. The
system development process focuses on integrating these
components into a system rather than developing them from scratch

These models are not exclusive and are often used together. For example:

â Parts well understood + waterfall-model process

â Parts that are difficult to specify in advance (e.g., user interface) +
incremental approach



SOFTWARE PROCESS MODELS

The waterfall model

â The waterfall model is an example of a plan-driven process. In
principle, you must plan and schedule all of the process activities
before starting to work on them.

â It is the first published model of software development process
(1970).

Requirements

Definition

System and 

Software Design

Implementation

and Unit Testing

Integration and

System Testing

Operation and

Maintenance



SOFTWARE PROCESS MODELS

The waterfall model
The principal stages of the waterfall model directly reflect the
fundamental development activities:

â Requirements analysis and definition The system’s services,
constraints, and goals are established by consultation with system
users. They are then defined in detail and serve as a system
specification

â System and software design The system design process establishes
an overall system architecture, while software design involves
identifying and describing the fundamental software system
abstractions and their relationships

â Implementation and unit testing During this stage, the software
design is realized with a set of programs or program units. Unit
testing involves verifying that each unit meets its specification



SOFTWARE PROCESS MODELS

The waterfall model

â Integration and system testing The individual program units or
programs are integrated and tested as a complete system to ensure
that the software requirements have been met. After testing, the
software system is delivered to the customer

â Operation and maintenance This is the longest life cycle phase. The
system is installed and put into practical use. Maintenance involves
correcting errors which were not discovered in earlier stages of the
life cycle, improving the implementation of system units, and
enhancing the system’s services as new requirements are discovered

In principle, the result of each phase is one or more documents that are
approved (’signed off’). The following phase should not start until the
previous phase has finished. In practice, these stages overlap and feed
information to each other.



SOFTWARE PROCESS MODELS

The waterfall models: pros ans cons

â It is consistent with other engineering process models and
documentation is produced at each phase. This makes the process
visible so managers can monitor progress against the development
plan.

â Its major problem is the inflexible partitioning of the project into
distinct stages. Commitments must be made at an early stage in the
process, which makes it difficult to respond to changing customer
requirements.

When to use the waterfall model

â In principle, the waterfall model should only be used when the
requirements are well understood and unlikely to change radically
during system development.

â a waterfall model use case: formal system development (the system
specification is a mathematical model)



SOFTWARE PROCESS MODELS

Incremental development

â Incremental development is based in the idea of developing an initial
implementation, exposing this to user comment and evolving it
through several versions until an adequate system has been
developed.

â Specification, development, and validation activities are interleaved
rather than separate, with rapid feedback across activities

Outline

Description

Specification

Development

Validation
Final

Version

Initial

Version

Intermediate

Versions



SOFTWARE PROCESS MODELS

Incremental development

â Incremental software development is usually better than a waterfall
approach

â Incremental development reflects the way that we solve problems

â Each increment or version of the system incorporate some of the
functionality that is needed by the customer.

â Generally, the early increments of the system include the most
important or the most urgently required functionality. This gives the
user the possibility of evaluating the system at a relatively early
stage in the development.



SOFTWARE PROCESS MODELS

Incremental development: pros and cons
Incremental development has three important benefits, compared to the
waterfall model:

â The cost of accommodating changing customer requirements is
reduced (amount of analysis and documentation that has to be
redone)

â It is easier to get customer feedback on the development work that
has been done. Customers can comment on demonstrations of the
software and see how much has been implemented.

â More rapid delivery and deployment of useful software to the
customer is possible, even if all of the functionality has not been
included. Customers are able to use and gain value from the
software earlier than is possible with a waterfall process.



SOFTWARE PROCESS MODELS

Incremental development: pros and cons
From a management perspective, the incremental approach has two
problems

1. The process is not visible. Managers need regular deliverables to
measure progress. If systems are developed quickly, it is not
cost-effective to produce documents that reflect every version of the
system

2. System structure tends to degrade as new increments are added.
Unless time and money is spent on refactoring to improve the
software, regular change tends to corrupt its structure. Incorporating
further software changes becomes increasingly difficult and costly.

Today, incremental development in some form is the most common
approach for the development of application systems. But it is not
well-adapted to large, complex, long-lifetime systems, where different
teams develop different parts of the system. Large systems need a stable
framework that has to be planned in advance.



SOFTWARE PROCESS MODELS

The goal of software processes is to specify, design, implement, and test
a software system.

Software specification

â Software specification (or requirements engineering) is the process of
understanding and defining what services are required from the
system and identifying the constraints on the system’s operation and
development.

â This is a critical stage of the software process since errors at this
stage inevitably lead to later problems in the system design and
implementation.



SOFTWARE PROCESS MODELS

Software specification

â There are four main activities in this process:

1. Feasibility study
2. Requirements elicitation and analysis

This is the process of requirements through observation of existing
systems, discussion with potential users, task analysis, etc. These
help understanding the system to be specified

3. Requirements specification
This is the activity of translating the information gathered during the
analysis activity into a document that defines a set of requirements
(user and system requirements)

4. Requirements validation
This activity checks the requirements for realism, consistency, and
completeness



SOFTWARE PROCESS MODELS

Software design and implementation

â The implementation stage of software development is the process of
converting a system specification into an executable system.

â It always involves processes of software design and programming,
with sometimes a refinement of software specification (incremental
approach)

â A software design is a description of the structure of the software to
be implemented, the data models and structures used by the system,
the interfaces between system components and, sometimes, the
algorithms used.

â The process of software design is often developed iteratively.



SOFTWARE PROCESS MODELS

Software validation

â Software validation is intended to show that a system both conforms
to its specification and that it meets the expectations of the system
customer.

â Program testing, where the system is executed using simulated test
data, is the principal validation technique

â Except for small programs, systems should not be tested as a single
monolithic unit.



SOFTWARE PROCESS MODELS

Software validation

â The stages in the testing process are:

1. Development testing The components making up the system are
tested by the people developing the system. Each component is
tested independently, without other system components.

2. System testing System components are integrated to create a
complete system. This process is concerned with finding errors that
result from unanticipated interactions between components and
component interface problems.

3. Acceptance testing The system is tested with data supplied by the
customer rather that with simulated test data. Acceptance testing
may reveal errors and omissions in the system requirements
definition.



SOFTWARE PROCESS MODELS

Software evolution (maintenance)

â Software development does not stop when a system is delivered

â It continues throughout the lifetime of the system

â The costs of maintenance are often several times the initial
development costs

â Hardly any software systems are completely new systems and it
makes much more sense to see development and maintenance as a
continuum.

â Software engineering can be seen as an evolutionary process where
software is continually changed over its lifetime in response to
changing requirements and customer needs.



OUTLINE

1. Software Processes
what are the activities involved in producing a software?

2. Requirement Engineering
How to define what a software should (and should not) do?

3. System Modeling
How to develop abstract models of a system, with each model
presenting a different view or perspective of that system?

4. Architectural Design and Implementation
How a software should be organized?

5. Software testing
What kind of tests should be carried out to validate a software?

6. Software evolution
How to help your software evolving?



REQUIREMENTS ENGINEERING

(SOFTWARE REQUIREMENTS)

Introduction

â The requirements for a system are the descriptions of what the
system should do: the services that it provides and the constraints
on its operation.

â The process of finding out, analyzing, documenting and checking
these services and constraints is called requirements engineering.

â Requirements can be divided into:

1. User requirements These are statements of what services the system
is expected to provide to system users and the constraints under
which it must operate

2. System requirements There are more detailed description of the
software system’s functions, services, and operational constraints.
The system requirements document (sometimes called a functional
specification) should define exactly what is to be implemented.



REQUIREMENTS ENGINEERING

Functional and non-functional requirements
Software system requirements are often classified as:

â Functional requirements These are statements of services the system
should provide, how the system should react to particular inputs,
and how the system should behave in particular situations. They can
also include explicitly what the system should not do.

â Non-functional requirements These are constraints on the services or
functions offered by the system, They include timing constraints,
constraints on the development process, and constraints imposed by
standards.



REQUIREMENTS ENGINEERING

Functional requirements

â The functional requirements for a system describe what the system
should do

â They are usually described in an abstract way that can be
understood by system users.

â In principle, the functional requirements specification of a system
should be both complete and consistent.

3 Completness means that all services required by the user should be
defined

3 Consistency means that requirements should not have contradictory
definitions

â In practice, for large, complex systems, it is practically impossible to
achieve requirements consistency and completeness



REQUIREMENTS ENGINEERING

Non-functional requirements

â Non-functional requirements are requirements that are not directly
concerned with the specific services delivered by the system to its
users.

â Non-functional requirements, such as performance, security, or
availability, usually specify or contrain characteristics of the system
as a whole

â Non-functional requirements are often more critical than individual
functional requirements: failing to meet a non-functional
requirement can mean that the whole system is unusable.

â Non-functional requirements can relate for example about speed,
size, ease of use, reliability, robustness, portability, etc.



REQUIREMENTS ENGINEERING

The software requirements document

â The software requirements document(/specification) is an official
statement of what the system developers should implement.

â It should include both the user and the system requirements

â The level of details included in the document depends on the type of
system that is being developed and the development process used
(plan-driven vs. incremental).

Requirements specification

â The requirement specification is the process of writing down the user
and system requirements in a requirements document.

â Ideally, the user and system requirements should be clear,
unambiguous, easy to understand, complete, and consistent.



OUTLINE

1. Software Processes
what are the activities involved in producing a software?

2. Requirement Engineering
How to define what a software should (and should not) do?

3. System Modeling
How to develop abstract models of a system, with each model
presenting a different view or perspective of that system?

4. Architectural Design and Implementation
How a software should be organized?

5. Software testing
What kind of tests should be carried out to validate a software?

6. Software evolution
How to help your software evolving?



SYSTEM MODELING

What is system modeling?

â System modeling is the process of developing abstract models of a
system, with each model presenting a different view or perspective of
that system.

â System modeling generally means representing the system using
some kind of graphical notation, which is now almost always based
on notations in the Unified Modeling Language (UML)

â The most important aspect of a system model is that it leaves out
detail

â A model is an abstraction of the system being studied rather than
an alternative representation of that system.



SYSTEM MODELING

The Unified Modeling Language (UML)

â UML is a set of 13 different diagram types that may be used to
model software systems.

â It emerges in 1990s on object-oriented modeling

â A major revision (UML2) was finalized in 2004

â Most users of UML use five diagram types to represent the essentials
of a system:

1. Activity diagrams, which show the activities involved in a process or
in data processing

2. Use case diagrams, which show the interactions between a system
and its environment

3. Sequence diagrams, which show interactions between actors and the
system and between system components

4. Class diagrams, which show the object classes in the system and the
associations between these classes

5. State diagrams, which show how the system reacts to internal and
external events



SYSTEM MODELING

Activity diagrams

â Activity diagrams are intended to show the activities that make up a
system process and the flow of control from one activity to another.



SYSTEM MODELING

Use case diagrams

â A use case can be taken as a
simple scenario that describes
what a use expects from a
system

â Each use case represents a
discrete task that involves
external interaction with a
system



SYSTEM MODELING

Sequence diagram

â Sequence diagrams are
primarily used to model the
interactions between the actors
and the objects in a system and
the interactions between the
objects themselves.

â A sequence diagram shows the
sequence of interactions that
take place during a particular
use case or use case instance.



SYSTEM MODELING

Class diagram

â Class diagrams are used when
developing an object-oriented
system model to show the
classes in a system and the
associations between these
classes

â An association is a link between
classes that indicates that there
is a relationship between these
classes (composition,
inheritance, etc.)



SYSTEM MODELING

State diagram

â State diagrams show system
states and events that cause
transitions from one state to
another

â They do not show the flow of
data within the system but may
include additional information
on the computations carried
out in each state



OUTLINE

1. Software Processes
what are the activities involved in producing a software?

2. Requirement Engineering
How to define what a software should (and should not) do?

3. System Modeling
How to develop abstract models of a system, with each model
presenting a different view or perspective of that system?

4. Architectural Design and Implementation
How a software should be organized?

5. Software testing
What kind of tests should be carried out to validate a software?

6. Software evolution
How to help your software evolving?



ARCHITECTURAL DESIGN AND IMPLEMENTATION

Architectural design

â Architectural design is concerned with understanding how a system
should be organized and designing the overall structure of that
system.

â The output of the architectural design process is an architectural
model that describes how the system is organized as a set of
communicating components.

â In the incremental model, it is generally accepted that an early stage
of the development process should be concerned with establishing an
overall system architecture.

â However, incremental development of architectures is not usually
successful. Refactoring a system architecture is likely to be
expensive.

â Ideally, a system specification should not include any design
information. In practice, this is untrue. Architectural decomposition
is usually necessary to structure and organize the specification.



ARCHITECTURAL DESIGN AND IMPLEMENTATION

Architectural design

â Software architecture is important because it affects the
performance, robustness, distributability, and maintainability of a
system.

â Individual components implement the functional system
requirements.

â The non-functional requirements depend on the system architecture.

â In many systems, non-functional requirements are also influenced by
individual components, but the architecture of the system is the
dominant influence.



ARCHITECTURAL DESIGN AND IMPLEMENTATION

Architectural patterns

â The architecture of a software system may be based on a particular
architectural pattern or style.

â An architectural pattern is a description of a system organization,
such as a client-server organization or a layered architecture, etc.

â Architectural patterns capture the essence of an architecture that
has been used in different software systems.

â Commonly used architectural patterns include:

3 Model-View-Controller
3 Layered Architecture
3 Repository
3 Client-server
3 Pipe and filter



ARCHITECTURAL DESIGN AND IMPLEMENTATION

The Model-View-Controller pattern

â The MVC software architecture pattern separates presentation and
interaction from the system data.

â The system is structured in to three logical components that
interact with each other.

3 The Model component manages the system data and associated
operations on that data.

3 The View component defines and manages how the data is presented
to the user.

3 The Controller component manages user interaction (e.g., key
presses, mouse clicks, etc.) and passes there interactions to the View
and the Model components



ARCHITECTURAL DESIGN AND IMPLEMENTATION

The Model-View-Controller pattern

â The MVC pattern is used when
there are multiple ways to view
and interact with the data

â It allows the data to change
independently of its
representation and vice-versa.

â Examples of MVC patterns:
many websites, graphical
interfaces to program (e.g.,
GaussView/Gaussian), etc.

ManipulatesUpdates

Sees

CONTROLLERVIEW

MODEL

USER

Uses



ARCHITECTURAL DESIGN AND IMPLEMENTATION

The Layered architecture pattern

â The layered architecture is
another of achieving separation
and independence

â The system functionality is
organized into separate layers,
and each layer only relies on the
facilities and services offered by
the layer immediately beneath it

User Interface

Authentification and Authorization

User Interface Management

System Support (OS, Database, etc.)

System utilities, Application Functionality



ARCHITECTURAL DESIGN AND IMPLEMENTATION

The Layered architecture pattern

â The layered architecture allows incremental approach: as a layer is
developed, some of the services provide by that layer may be made
available to the others

â It is also changeable and portable: so long as its interface is
unchanged, a layer can be replaced by another, equivalent layer.
Furthermore, when layer interfaces change or new facilities are added
to a layer, only the adjacent layer is affected

â It makes also easier to provide multi-platform implementations by
localizing machine dependencies in inner layers



ARCHITECTURAL DESIGN AND IMPLEMENTATION

The Client-Server architecture pattern

â In a client-server architecture, the functionality of the system is
organized into services, with each service delivered from a separate
server.

â Clients are users of these services and access servers to make use of
them.

â The major components of this model are:

1. A set of servers that offer services to other components
2. A set of clients that call on the services offered by servers. This

usually means several instances of a client program executing
concurrently on different computers.

3. A network that allows the clients to access these services.



ARCHITECTURAL DESIGN AND IMPLEMENTATION

The Client-Server architecture pattern

â An important benefit is
separation and independence.
Services and servers can be
changed without affecting other
parts of the system.

â Clients access the services
provided by a server through
remote procedure calls using a
request-reply protocal

â For example, in the http
protocol, a client makes a
request to a server and waits
until it receives a reply.

Client 1 Client 2 Client 3 Client 4

Network

Service 1 Service 2 Service 3



ARCHITECTURAL DESIGN AND IMPLEMENTATION

Implementation issues

â A critical stage of software development is, of course, system
implementation, where one creates an executable version of the
software.

â We don’t cover here “good” programming practices that are usually
language specific.

â However, there are some aspects of implementation that are
particularly important and that are language-independent:

1. Reuse Most modern software is constructed by reusing existing
components or systems. You should make as much use as possible of
existing codes

2. Configuration Management During the development process, many
different versions of each software component are created. You
should keep track of them

3. Host-target development Production software does not usually
execute on the same computer as the software development
environment. You should separate the host system (where you
develop) and the target system (where you execute).



ARCHITECTURAL DESIGN AND IMPLEMENTATION

Implementation issues: Reuse

â By reusing existing software, you can develop new systems more
quickly, with fewer development risks and also lower costs.

â As the reused software has been tested in other applications, it
should be more reliable than new software.

â However, there are costs associated with reuse:

1. The costs of the time spent in looking for software to reuse and
assessing whether or not it meets your needs

2. The costs of buying the reusable software (where applicable)
3. The costs of adapting and configuring the reusable software

components or systems
4. The costs of integrating reusable software elements with each other

and with the new code that you have developed



ARCHITECTURAL DESIGN AND IMPLEMENTATION

Implementation issues: Configuration Management

â In software development, change happens all the time, so change
management is essential

â You have to ensure that:

3 team members don’t interfere with each other’s work
3 changes on the same component are coordinated
3 everyone can access the most up-to-date versions of software

components
3 when something goes wrong with a new version, you have to be able

to go back to a working version of the system or component

â Configuration management is the name given to the general process
of managing a changing software system

â The aim of configuration management is to support the system
integration process so that developers :

3 can access the project code and documents in a controlled way
3 find out what changes have been made
3 compile and link components to create a system



ARCHITECTURAL DESIGN AND IMPLEMENTATION

Implementation issues: Configuration Management
There are three fundamental configuration management activities:

â Version management where support is provided to keep track of the
different versions of software components

â System integration where support is provided to help developers
define what versions of components are used to create each version
of a system

â Problem tracking where support is provided to allow users to report
bugs and other problems, and to allow all developers to see who is
working on these problems and when they are fixed



ARCHITECTURAL DESIGN AND IMPLEMENTATION

Implementation issues: Host-target development

â Most software development is based on a host-target model

â The software is developed on a development platform

â It runs on an execution platform

â A platform is more than just hardware. It includes the installed OS,
plus other supporting software such as a database management
system, or an interactive development environment (IDE)

â If the targeted execution platform is not the development platform,
it is necessary either to move the development software to the
execution platform for testing or run a simulator on the development
machine



OUTLINE

1. Software Processes
what are the activities involved in producing a software?

2. Requirement Engineering
How to define what a software should (and should not) do?

3. System Modeling
How to develop abstract models of a system, with each model
presenting a different view or perspective of that system?

4. Architectural Design and Implementation
How a software should be organized?

5. Software testing
What kind of tests should be carried out to validate a software?

6. Software evolution
How to help your software evolving?



SOFTWARE TESTING

Introduction

â Testing is intended to show that a program does what it is intended
to do and to discover program defects before it is put into use

â The testing process has two distinct goals:

1. To demonstrate to the developer and the customer that the software
meets its requirements. This is called validation testing.

+ For custom software, this means that there should be at least one
test for every requirement in the requirements document

+ For generic software products, it means that there should be tests for
all of the system features, plus combinations of these features

2. To discover situations in which the behavior of the software is
incorrect, undesirable, or does not conform to its specification. This
is called defect testing.

â Testing cannot demonstrate that the software is free of defects or
that it will behave as specified in every circumstance.

Testing can only show the presence of errors, not their absence
E. Dijkstra said (1972)



SOFTWARE TESTING

Introduction

â Testing is part of a broader process of software verification and
validation

3 Validation: Are we building the right product?
3 Verification: Are we building the product right?

â The ultimate goal of verification and validation processes it to
establish confidence that the software system is “fit for purpose”.

â The verification and validation process may involve software
inspections and reviews.

â Software inspections and reviews analyze and check the system
requirements, design models, the program source code, and even
proposed system test.

â Software inspections and reviews like automated static analysis of
the source code are related to quality management



SOFTWARE TESTING

Development testing

â Development testing includes all testing activities that are carried
out by the team developing the system.

â During development, testing may be carried out at three levels of
granularity

1. Unit testing, where individual program units or object classes are
tested. Unit testing focuses o testing the functionality of objects or
methods.

2. Component testing, where several individual units are integrated to
create composite components. Component testing should focus on
testing component interfaces

3. System testing, where some or all of the components in a system are
integrated and the system is tested as a whole. System testing
should focus on testing component interactions



OUTLINE

1. Software Processes
what are the activities involved in producing a software?

2. Requirement Engineering
How to define what a software should (and should not) do?

3. System Modeling
How to develop abstract models of a system, with each model
presenting a different view or perspective of that system?

4. Architectural Design and Implementation
How a software should be organized?

5. Software testing
What kind of tests should be carried out to validate a software?

6. Software evolution
How to help your software evolving?



SOFTWARE EVOLUTION

Introduction

â Software development does not stop when a system is delivered but
continues throughout the lifetime of the system.

â After a system has been deployed, it inevitably has to change if it is
to remain useful.

â Business changes and changes to user expectations generate new
requirements

â Parts of the software may have to be modified to correct errors that
are found inoperation, to adapt it for changes to its hardware and
software platform, and to improve its performance or other
non-functional characteristics

â Useful software systems often have very long lifetime!



SOFTWARE EVOLUTION

Introduction

â Software engineering can be
seen as a spiral process with
requirements, design,
implementation, and testing
going on throughout the
lifetime of the system

Specification Implementation

ValidationOperation

Start

Release 1

Release 3

Release 2



SOFTWARE EVOLUTION

Overview of the evolution process

Enhancement

System

Adaptation

Platform
Fault Repair

ReleaseImplementationPlanningAnalysisRequests

SystemChangeReleaseImpactChange

â During release planning, all proposed changes are considered (fault
repair, adaptation, and new functionality)

â Change implementation can be seen as an iteration of the
development process, where the revisions to the system are designed,
implemented, and tested.


